

Suzanne te Velthuis

Materials Science Division

Instrument Scientist of POSYI reflectometer

- A) Introduction:
 Time of Flight Neutron Reflectometry
- B) Your Experiment: Neutron Reflectivity from Polymer Films on Si

Neutron Reflectivity

 Θ : angle of incidence

λ: wavelength

The reflectivity of the sample is measured as a function of the scattering vector Q

$$\mathbf{Q} = -\mathbf{k}_{i} + \mathbf{k}_{f}$$
$$|\mathbf{Q}| = 4 \pi \sin \Theta / \lambda$$

- => two concepts for neutron reflectivity measurements:
 - a) fixed wavelength + variable angle
 - b) variable wavelength + fixed angle

Total Reflection at Surfaces

For neutrons (and X-rays) with wavelengths of a few Å, almost all materials have an optical index slightly smaller than 1.

=> Total reflection up to a critical angle $\Theta_{crit}(\lambda)$

Refraction index:

 $n(\lambda) = k_{z2}$ (inside the media) / k_{z1} (outside)

Kinetic energy of a free particle:

$$E_1 = \ddot{y}^2 k_{z1}^2 / 2m_N$$

Inside the media with potential V, k ₂₂ is (in most cases) smaller (conservation of energy):

$$\ddot{y}^2 k_{z2}^2 / 2m_N + V = E_1$$
=> $k_{z2} = (k_{z1}^2 - 2m_N V / \ddot{y}^2)^{1/2}$

Connection to microscopic properties:

Fermi pseudo potential: $V = 2\pi \ddot{y}^2 N b/m_N$

with N: number density [at/cm³]

b: coherent scattering length of the

nuclei in the material [fm]

Critical angle for total reflection is reached, if $E_z=V$

$$\Theta_{\text{crit}} = \sin^{-1}\lambda (\mathbf{N} \cdot \mathbf{b}/\pi)^{1/2} = \cos^{-1}\mathbf{n}$$
or
$$Q_{\text{crit}} = 4\pi \sin\Theta / \lambda = 4(\pi \mathbf{N} \cdot \mathbf{b})^{1/2}$$

Suzanne te Velthuis

Calculation of the reflectivity at a potential step

Solution of the quantum mechanic problem:

Fresnel equations

Reflectivity
$$R = |r|^2 = |(k_1 - k_2) / (k_1 + k_2) \exp(i2k_1z)|^2$$

Transmission $T = |t|^2 = |2k_1 / (k_1 + k_2) \exp(i2(k_1 - k_2)z)|^2$

Example: Potential of a multilayer

Potential V

At each interface one has to take into account:

- Refraction effects
- Multiple-scattering effects

Bragg's Law for Periodic Layered Structures

constructive interference if: $2d \sin\Theta = n \lambda$

d: double layer thickness

 Θ : angle of incidence

n: order number (0,1,2,...)

λ: wavelength

Reflectivity of Layered Structures

Suzanne te Velthuis

Reflectivity of Magnetic Layers

Fermi pseudo potential:

$$V = 2^{\pi} \hbar^2 N \left(\frac{b_n + -b_{mag}}{m_N} \right) / m_N$$

with b_{nuc} : nuclear scattering length [fm]

b_{mag}: magnetic scattering length [fm]

 $(1 \mu_B/Atom => 2.695 fm)$

N: number density [at/cm³]

m_N: neutron mass

Spin"up" neutrons see a high potential. Spin"down" neutrons see a low potential.

Polarized Neutron Reflectivity of Layered Magnetic Structures

Suzanne te Velthuis

Bragg's Law for Periodic Layered Structures

constructive interference if: $2d \sin\Theta = n \lambda$

Research topics:

- morphology and thermodynamics
- of ultrathin polymer films
- monolayer films on liquids
- •liquid/liquid and liquid/solid interfaces
- •structure evolution
- diluted systems
- •much more !!!

Why are (rare) Neutrons an excellent Probe for Soft Matter?

Hydrogen and Deuterium Labeling

$$b_{xray} = 0.282 \times 10^{-4} \text{ Å}$$

$$b_{neutron} = -0.374 \times 10^{-4} \text{ Å}$$

Deuterium

$$b_{xray} = 0.282 \times 10^{-4} \text{ Å}$$

$$b_{neutron} = 0.665 \times 10^{-4} \text{ Å}$$

Hydrogen and deuterium have a huge difference in the interaction strength with neutrons!

Examples for Hydrogen/Deuterium Contrast Variation

Neutron Scattering Length Density for Polystyrene

hydrogenated (C_8H_8): 1.4 x 10⁻⁶ Å⁻¹

deuterated (C_8D_8): 6.4 x 10⁻⁶ Å⁻¹

dPS has a much higher edge of total reflectivity!

"Double layer" system shows two periodicities:

- a) low frequency contribution from 390 Å dPS
- b) high frequency contribution from

690 Å total film thickness (barely visible)

The oscillations from 390 Å dPS dominate

due to its high potential!

The Intense Pulsed Neutron Source Facilities

Neutrons are created by a 450 MeV/14 μ A (=6.3 kW) proton beam which hits a Uranium target. The protons strike the target in 80 ns long pulses with a frequency of 30 Hz. The Uranium "boils off" neutrons in spallation and fast fission processes. The fast neutrons emerging the target are slowed down by a liquid hydrogen moderator ($T_{\rm eff}$ = 32 K).

The IPNS Neutron Reflectometer POSY II

Instrument Scientist POSYII:

Rick Goyette

Beam Line	C2		
Initial Flight Path	6.2 m		
Final Flight Path	1.8 m		
Beam Size	50 mm x (0 -3 mm)		
Detector	Linear Position Sensitive Detector 20 cm		
Choppers	none		
Intensity	100 neutrons/pulse		
Wave -vector Range	0-0.25 Å ⁻¹		
Wave-vector Resolution	1 x 10 ⁻⁴ Å ⁻¹		

POSY II

Suzanne te Velthuis

The Filter/Collimation System of POSY II

Soller filter: reflects $\lambda > 2.5$ Å to the sample

Frame overlap filter: reflects $\lambda > 16$ Å out of the beam

=>

Neutron spectrum of POSY II: $2.5 \text{ Å} > \lambda > 16 \text{ Å}$

The IPNS Neutron Reflectometer POSY I

Instrument Scientist POSYI:

Suzanne te Velthuis

Scientific Associate:

Rick Goyette

Post Doc:

Abdel Al-Smadi

Beam Line	C2
Initial Flight Path	8.3 m
Final Flight Path	0.9 m
Beam Size	(0-0.3) x 25mm
Detector	Linear Position Sensitive Detector 20 cm
Choppers	none
Intensity	40 neutrons/pulse
Wave-vector Range	0-0.08 Å ⁻¹
Wave -vector Resolution	$2 \times 10^{-4} \text{ Å}^{-1}$

POSY II

Suzanne te Velthuis

The Filter/Collimation System of POSY I

Suzanne te Velthuis

Time-of-flight Spectrum at Detector Position

$$\lambda = 2.5 \text{ Å} => t_{TOF} = 4898 \text{ µs}$$

 $\lambda = 16 \text{ Å} => t_{TOF} = 31348 \text{ µs}$
new pulse starts at: 33333 µs

Relation between wavelength λ and time of flight t_{TOF} :

$$\lambda = \frac{h}{m_n L_{TOF}} \cdot t_{TOF}$$

with:

Planck's constant $h = 6.626 \cdot 10^{-34} Js$ neutron mass $m_n = 1.675 \cdot 10^{-27} kg$ distance source/detector $L_{TOF} = 7.750 m$

$$\lambda (Å) = 5.104 \cdot 10^{-4} \cdot t_{TOF} (\mu s)$$

Performing a Time-of-Flight Neutron Reflectometry Experiment

1. Step:

Measure a "Transmission Run"

(This is a measurement without a sample in the beam in order to determine the incident wavelength spectrum.)

Looking at the Raw Data (POSYII)

Setup for a transmission run: (top view)

Looking at the Raw Data (POSYII)

18-AUG-99 INST: POSY USER: Goyette RUN/VER: 10953 /0000 08:56:22 TITLE: 1 of 2 -- Transmission Run 0.5 & 1.0 Degrees, Rotated De

DISPLAY: 2H-F:Y= 1, 1 :T= 1,256 PULSES: 14:82140 CURSOR: 244.32 0.0000 PRESET: 25:108000

Transmission run:

_ B ×

plotted: Intensity = f(Position on detector)

Straight-through neutron beam is in channel 236.

This defines the zero point of the reflection angle.

INPUT ALL COMMANDS FROM TEXT WINDOW

Performing a Time-of-Flight Neutron Reflectometry Experiment

2. Step:

Insert the sample and measure a "Reflectivity Run"

(Choose the scattering angle appropriately such that the run covers the desired Q range.)

3. Step:
Calculate the reflectivity
of the sample
(Divide the "Reflectivity Run"
by the "Transmission Run".)

Looking at the Raw Data (POSYII)

Reflectivity run:

Looking at the Raw Data

POSY1

POSY2

€ 1 5:00 PM

☑ Microsof...
☐ *******

Performing a Time-of-Flight Neutron Reflectometry Experiment

4. Step:

Analyze the measured data to learn about your sample

(Use "Trial and Error" method but put as much previous knowledge in your models as you can!

- What are the approximate scattering length densities of your sample?
- What are the approximate layer thicknesses ? etc.)

Experiment Schedule

Experiment module	Room	Assistant	
Module A Sample preparation/ spin coating	Outside Chem. Lab C248	Xuesong Hu	
Module B Monte Carlo simulations	A223	Suzanne te Velthuis	
Module C Experiment	POSYII	R.S. Krishnan	
Module D Data analysis	A223	Rick Goyette & Abdel Al-Smadi	

Experiment Schedule

Group 1	Group 2	Group 3	Group 4
Module A	Module D	Module C	Module B
Module B	Module A	Module D	Module C
Module C	Module B	Module A	Module D
Module D	Module C	Module B	Module A
	Module A Module B Module C	Module A Module D Module B Module A Module C Module B	Module A Module D Module C Module B Module A Module D Module C Module B Module A

Looking at the Raw Data (POSYI)

POSYI

